Neutrino factory and muon colliders in the USA

Harold G. Kirk Brookhaven National Laboratory

PLENARY MEETING on MUON MACHINES CERN September 20, 1999

100GeV HIGGS COLIDER

Neutrino Factory and Muon Colliders

Key Systems

Proton Driver: BNL, FNAL

Capture System: BNL, CERN, LBL, Princeton

Phase Rotation: BNL, CERN, LBL, Princeton

Ionization Cooling: BNL, FNAL, IIT, LBL

Acceleration: BNL, CERN, FNAL

Storage Ring: BNL, CERN, FNAL

Collider: BNL, FNAL

Detectors: BNL, FNAL

Proton Driver BNL, FNAL

Energy	GEV	24	24	16	16
Power	MW	1	4	1	4
Repetition	Hz	2.5	5	15	15
p's/fill		10^{14}	$2 \ 10^{14}$	2.5 10 ¹³	10 ¹⁴
bunches		6	6	4	4
circ.	m	807	807	474	474
spacing	m	135	135	118	118
sigma t	nsec	1	1	1	1

Key Components

- BNL-2.5 GeV Accumulator, 600 MeV Linac, 2nd 2.5 GeV Booster
- FNAL-1 GeV Linac, 3 GeV Prebooster, 16 GeV Booster

Overview of Targetry for a Muon Collider

- $1.2 \times 10^{14} \ \mu^{\pm}$ /s via π -decay from a 4-MW proton beam.
- Proton pulse ≈ 1 ns rms for a muon collider.
- Mercury jet target.
- 20-T capture solenoid followed by a 1.25-T π -decay channel with phase-rotation via rf (to compress energy of the muon bunch).

The Hybrid 20 T Solenoid

Strategy

20 T + r=7.5cm \implies P_t \leq 225 MeV/c Solenoid Attributes

Shielding

- 15 cm ID 24 cm OD
- Inner Coil
 - Resistive coil
 - -4 MW
 - 6 T
 - 24 cm ID 60 cm OD
- Outer Coils
 - Superconducting
 - 14 T
 - 60 cm ID

Matching section

20 T \rightarrow 1.25 T — warm bore 7.5cm \rightarrow 30cm

Phase Rotation Strategy

Phase Rotation Drift and Induction Linac

Summary of Low Frequency Cavities Gradients used in various models

	Parmela Kirk	MCMuon Palmer	ICOOL Fukui	MCMuon Palmer		
Freq	< E >					
MHz	MV/m					
100	4.5					
90	4.2		4			
60	3.6	5		8		
50	3.3		5			
45	3.3			7		
30	2.1	4	4	5		

Capture Issues

- Yield and spectra of low-energy pions
- Operation of a 20 T SC solenoid surrounding a \approx 4 MW target
- Operation of rf cavity in high radiation environment
- High-gradient pulsed operation of low-frequency rf cavities

The Target Experiment BNL,CERN,LBL,Princeton

Key Components

- 1.4 cm diameter liquid Hg jet
- 20-T Pulsed Solenoid
- 70 MHz rf cavity
- 1.25-T 2m ID Solenoid
- 1.25-T solenoidal diagnostic channel

Experiment Layout in the AGS A3 Line

Issues, 4: Pulsed 20-T Magnet

- The copper magnet will be cooled by LN_2 , and can be pulsed once every 10 minutes. Pulse duration ≈ 1 s.
- Engineer: Bob Weggel, designer: Bob Duffin.
- 4 MW (peak) power to be bussed from the MPS power supply house to the A3 line (Andy Soukas).
- 100 liters of LN_2 boiled off each pulse; vent outside of cave.
- A DC magnet is required as a transition between the pulsed magnet and the DC superconducting magnet around the rf cavity. This will require ≈ 1 MW average power.

Initial Beam/Liquid Experiment

TOP VIEW

CAMERA VIEW

Schedule

• FY99:

Prepare A3 area; begin work on liquid jets, extraction upgrade, magnet systems, and rf systems.

• FY00:

Initial beam tests in A3 line. Liquid jet test at NHMFL. (600 hours of AGS beamtime).

• FY01:

Complete extraction upgrade; test of liquid jet + beam. (600 hours).

• FY02:

Complete magnet and rf systems; test with 2 ns beam. (600 hours).

• FY03:

Complete pion detectors; test with low intensity SEB. (600 hours).

Ionization Cooling BNL, FNAL, IIT, LBL

Alternating Solenoid

MUTAC Review Talk

DPGeant simulation, 15T Alt. Sol., 1.548m lattice:

Ionization Cooling The FOFO Lattice

A FOFO Lattice

An sFOFO Lattice

- B=2.5T ; L=75m ; p_o=190 MeV/c
- ϵ_T (8000 \rightarrow 3000) π mm-mrad
- $\epsilon_{6D} (10^6 \rightarrow 2.5 \times 10^5) \times 10^{-12} (\pi \text{ m-rad})^3$
- rf frequency 175 MHz

Transverse emittance as a function of distance for the SFOFO and stretched RFOFO lattices. Peak field is roughly 10 T, and central beam momentum is 125 MeV/c. There are no beam correlations.

Full 6D emittance as a function of distance for the SFOFO and stretched RFOFO lattices. Peak field is roughly 10 T, and central beam momentum is 125 MeV/c. There are no beam correlations.

Beta function : 30 cm

Final transverse emittance (1500 mm-mrad) needed for Neutrino Factory is obtained at 130m channel.

Ionization Cooling Simulation Summary

Alt. Sol

- B=15T ; L=25m ; p_o=187 MeV/c
- ϵ_T (1500 \rightarrow 650) π mm-mrad
- ϵ_{6D} (2000 \rightarrow 700) \times 10⁻¹² (π m-rad)³
- rf frequency 805 MHz

rFOFO

- B=10T; L=22m; p_o=125 MeV/c
- ϵ_T (550 \rightarrow 300) π mm-mrad
- ϵ_{6D} (260 \rightarrow 160) \times 10⁻¹² (π m-rad)³
- rf frequency 805 MHz

FOFO

- B=4.4T ; L=130m ; p_o=197 MeV/c
- ϵ_T (8000 \rightarrow 1500) π mm-mrad
- $\epsilon_{6D} \ (10^6 \rightarrow 6 \times 10^4) \times 10^{-12} \ (\pi \text{ m-rad})^3$
- rf frequency 175 MHz

Ongoing MUCOOL Activities

- **1.** Develop the high-gradient RF cavities needed towards the end of the cooling channel.
- 2. Develop an RF power source that can drive these cavities.
- **3.** Prepare an RF high–power test setup (Lab G) to test the prototype cavities in a solenoid field.
- 4. Design a (15 T) alternating solenoid transverse cooling section corresponding to a cooling stage towards the end of the cooling channel. This includes the RF modules, solenoids, and liquid hydrogen absorbers.
- 5. Develop a short (15 cm) liquid lithium lens ... first step towards lenses that could be used at the end of the cooling channel (joint project with FNAL pbar source).
- 6. Design a cooling beam test facility & experiment and prototype instrumentation.

Muon Cooling Beam Test Facility Layout

T. Kobolarchik

16

MUCOOL RF R&D

BNL, FNAL, LBNL, Mississippi

Acceleration BNL,CERN,FNAL

Scenario #1

- Input emittance: 1500 π mm-mrad
- 175 MHz Linac: 100 MeV \rightarrow 600 MeV
- 350 MHz Linac: 600 MeV \rightarrow 2 GeV
- Recirulating Linac #1: 2 GeV \rightarrow 7.5 GeV
- Recirulating Linac #2: 7.5 GeV \rightarrow 50 GeV

Scenario #2

- Input emittance: 3000 π mm-mrad
- Acceleration upto 30 GeV

Storage Rings CERN, FNAL

Racetrack

Supports two detectors

Triangular Ring

Supports three detectors

Modified Figure 8

Supports three detectors

