rare μ decays

present limitations

a van der schaaf _ zürich

- 1. present limits on LFV involving charged leptons
- 2. work in progress
 - $\mu \to e \gamma$
 - $\mu \rightarrow 3e$
 - μ e conversion
- 3. low momentum μ beam at the Proton Accumulator
- 4. beam requirements for 10^3 fold increase in sensitivity

LF violating decays

branching ratio limits

Decay mode	upper limit	Ref.	
$\mu^{+} \rightarrow e^{+}\gamma \\ \rightarrow e^{+}e^{+}e^{-}$ $\mu^{-}Ti \rightarrow e^{-}Ti \\ \rightarrow e^{+}Ca^{*}$ $\mu^{-}Pb \rightarrow e^{-}Pb \\ \mu^{-}Au \rightarrow e^{-}Au \\ \mu^{+}e^{-} \leftrightarrow \mu^{-}e^{+}$	$\begin{array}{c} 1.2 \times 10^{-11} \\ 1.0 \times 10^{-12} \\ 6.1 \times 10^{-13} \\ 3.6 \times 10^{-11} \\ 4.6 \times 10^{-11} \\ 1.9 \times 10^{-11} \\ 8.3 \times 10^{-11} \end{array}$	MEGA SINDRUM I SINDRUM II SINDRUM II SINDRUM II SINDRUM I	1999 1988 1997 1997 1996 1999 1999
$\begin{array}{l} \tau \to e\gamma \\ \tau \to \mu\gamma \\ \tau \to 3\mu \\ \tau \to 2\mu e \\ \tau \to \mu 2e \\ \tau \to 3e \end{array}$	$\begin{array}{c} 2.7 \times 10^{-6} \\ 3.0 \times 10^{-6} \\ 1.9 \times 10^{-6} \\ 1.8 \times 10^{-6} \\ 1.7 \times 10^{-6} \\ 2.9 \times 10^{-6} \end{array}$	CLEO CLEO	1997 1998
$K^+ \to \pi^+ \mu e$ $K_L^o \to \mu e$ $B^o \to \mu e$ $\to \tau e$ $\to \tau \mu$	$\begin{array}{l} 2.1\times 10^{-10} \\ 4.7\times 10^{-12} \\ 5.9\times 10^{-6} \\ 5.3\times 10^{-4} \\ 8.3\times 10^{-4} \end{array}$	BNL871 BNL791 CLEO	1998 1993 1994
$Z^{0} \to e\mu \\ \to e\tau \\ \to \mu\tau$	$1.7 imes 10^{-6} \\ 9.8 imes 10^{-6} \\ 1.2 imes 10^{-5} \end{cases}$	OPAL	1995

rare μ decays

sensitivity limitations

$\mu \to e\gamma$

	$\mu ightarrow e\gamma$	$\mu \rightarrow 3e$	μe conv medium Z	version high 7
present limit	$1.2\cdot10^{-11}$	$1.0\cdot10^{-12}$	$6.1 \cdot 10^{-13}$	$1.6 \cdot 10^{-11}$ 4 \cdot 10^{-13}
by	MEGA (1999)	SINDRUM I	SINDRUM II	SINDRUM II
	(1999)	(1900)	(1997)	(1999)
future/0 evts	$3\cdot 10^{-14}$		10^{-16}	
by '	mini Kamiok.		MECO	
limited by	accidentals	datactor ratac	rata	boom
infilted by	accidentais	detector rates	μ rate	Deam
key param.	E_{γ} , Δt , $ heta$	coplanarity	momentun	า
	,	vertex	high-mome	entum tail beam purity
improvements	thinner target	thinner target		
(other than beam)	e+ spectrom. IB veto	larger target detector granularity		
,		2	-	
goal	10^{-15}	10^{-16}	10^{-18}	10^{-17}

but:

what do we know about detector technology in the year 2010?

$\mu ightarrow e \gamma$ signal and background

MEGA LAMF search for $\mu \to e \gamma$

$$\mu \to e\gamma$$

duty cycle $6-7 \ \%$ instantaneous stop rate $2.5 \cdot 10^8 s^{-1}$ total number of stops $1.2 \cdot 10^{14}$ total detection efficiency $0.43 \ \%$ 90% C.L. upper limit (events)5.190% C.L. upper limit (B) $1.2 \cdot 10^{-11}$

Search for $\mu^+ ightarrow e^+ \gamma$ down to 10^{-14} branching ratio

KEK-Nagoya-Novosibirsk-PSI-Tokyo-Waseda

schematic view of the detector (Fig.1 of proposal)

Z branch gives

 ≈ 3 times more surface μ^+ and ≈ 15 times more cloud μ^+ (and $\mu^-)$

i.e. (for $\approx 6\%$ momentum band)

$3 \cdot 10^{8}$	$\mu^{+}s^{-1}$	around	28	MeV/c
$3\cdot 10^7$	$\mu^{-}s^{-1}$	around	50	MeV/c

at 1.5 mA p on 6cm C

SINDRUM II Search for $\mu^-(A,Z) \to e^-(A,Z)$

SINDRUM II Search for $\mu^{-}Ti \rightarrow e^{-}Ti$

Electron energy distribution at three stages of the event selection and as predicted by a GEANT simulation of μe conversion at $B_{\mu e} = 4 \cdot 10^{-12}$.

measuring time	50 days
muon stops	$3.1 imes 10^{13}$
capture fraction	85%
acceptance	42%
efficiency	35%
1/sensitivity	$3.9 imes10^{12}$
sensitivity	$2.6 imes 10^{-13}$
events seen	<2.3 (90% C.L.)
90% C.L. limit	$6.1 imes 10^{-13}$

MECO:

Search for $\mu^- N \to e^- N$ with Sensitivity Below 10^{-16} $$\mu \rm e$

The MECO beam and detector system. The proton beam enters the production solenoid from the right side.

MECO: Production and transport solenoids

Simulated trajectories in production and transport solenoids. The downward drift in the curved solenoid depends on momentum. Positive charge drifts upward.

MECO: beam pulsing

1.0 second accelerator cycle

Proton beam structure.

Data are taken during second half of the time between two RF buckets.

The beam extinction in between the buckets has to be better than 10^{-9} .

Distribution of π^- arrival time

MECO: expected result

Sir	nulati	on	of	expe	cted
sig	gnals	and	l ba	.ckgr	ound
at	B=10	-16	in	10^{7}	s.

proton momentum	8	GeV/c
proton rate	$4 imes 10^{13}$	/s
	17,1011	1-
μ entering solenoid	$1.7 \times 10^{}$	/s
μ stops in target	1.0×10^{11}	/s
μ captured in Al	$6 imes 10^{10}$	/s
fraction in Δ t window	$3 imes 10^{10}$	/s
"reconstructed"	$5 imes 10^9$	/s
	107	
measuring time	10'	S
seen at $B=10^{-16}$	5	

Proton Accumulator:

Low-momentum π and μ extraction

beam

surface μ^+

Highest μ^+ yields are obtained from decay at rest of π^+ that stopped in the surface of the production target

cloud μ^-

Low momentum μ^- beams orginate in the decay of slow π^- in the region around the production target.

rare μ decays

beam requirements

hopes and wishes

```
for \mu \to e\gamma and \mu \to 3e:
- (sub)surface \mu^+ beam
- DC on the scale of the muon lifetime
- at least 10^{11}~\mu^+s^{-1}
- e/\mu < 1\%
for \mu e conversion on medium Z target:
- pulsed beam of cloud \mu^-
- pulse width \approx100 ns or less
- extinction factor <10^{-11}
- momentum 50-70 MeV/c
- at least 10^{13}~\mu^-s^{-1}
for \mu e conversion on any target:
- very clean cloud \mu^-
- momentum around 50-60 \text{ MeV/c}
- momentum resolution few percent for \pi/\mu range
separation - long channel (50 m or more) to suppress pions
- at least 10^{12} \mu^- s^{-1}
- e/\mu < 1%
```