

International Muon-Cooling Demonstration Experiment Plans

Daniel M. Kaplan ILLINOIS INSTITUTE OF TECHNOLOGY Transforming Lives.Inventing the Future.www.iit.edu

MUTAC Review Lawrence Berkeley National Laboratory Oct. 19, 2001

Outline:

- 1. Motivations
- 2. Ionization cooling: background
- 3. Cooling lattices and simulated performance (US, CERN)
- 4. Cooling experiment:
 - a. Goals
 - b. Designs
 - c. Possible locations
- 5. International collaboration
- 6. Costs

Muon Cooling Demonstration Experiment

(From A. Blondel's summary)

Motivations:

--Ionization cooling is an important ingredient in **performance and cost** of a neutrino factory

--It has never been observed experimentally

--It is a delicate design and engineering problem

<u>Goal</u>

--design, engineer, build a section of cooling channel that is part of a high performance neutrino factory design

--put it in a beam and show that it works as expected

(if not, understand why!) The beam never lies.

This is a somewhat larger project that can be afforded by any one of the world's regions => International collaboration

Ionization Cooling: Background

- RF cavities between absorbers replace ΔE
- Net effect: reduction in p_{\perp} w.r.t. p_{\parallel} , i.e., transverse cooling

Note: The physics is not in doubt

- \Rightarrow in principle, ionization cooling **has** to work!
- ... but in practice it is subtle and complicated so a test is important

SFOFO Cooling Performance

Double-Flip Cooling Channel (V. Balbekov & D. Elvira, FNAL)

Double-Flip Performance

- Study II Appendix: Performance comparable to SFOFO
- New developments in the works (post-Study II):
- Can improve performance, shorten 7T section, reduce cost

CERN Cooling Channel Design

(A. Lombardi, CERN, Neutrino Factory Note NF-90)

- entry absorber 1 2 6 7 8 8 cavities/solenoids • Details less worked-out input output diagnostics diagnostics than for US designs: entry absorber exit absorber 2 3 4 • Uses lower-frequency RF (44/88 MHz) 4 cavities/solenoids output input
 - diagnostics diagnostics

exit absorber

Figure 1: Set-up with 8 cavities (upper sketch) and 4 cavities (lower sketch).

Cooling Experiment

Must demonstrate

- 1. that hardware of given design can operate in proposed μ -cooling configuration and environment (no beam required)
- 2. that proposed operating parameters and tolerances can be achieved (no beam required, but could be helpful)
- 3. that effect on muon beam is in detail as predicted by simulation
- For 2 & 3, helpful to have long enough channel that predicted effects are big
- But in reality we will be constrained by available resources

Note:

 $70 \text{ cm } \text{LH}_2 \rightarrow \Delta \text{E} \approx 20 \text{ MeV} \Rightarrow (\Delta \epsilon/\epsilon)_{2D} \approx 10\%$ (depending on choice of p)

<u>Cooling Experiment – Further considerations</u>

- Should test *realistic* piece of *optimal* vF cooling-channel design
 - insufficient manpower & resources to build & test multiple designs
- Not yet clear which vF design is optimal
 - to reach consensus, need each regional group to simulate & compare multiple designs (in progress)
- Choice may be constrained by
 - which (if any) design cheaper or more convenient to test
 - availability of infrastructure (e.g. 88- vs. 201-MHz RF sources)
- Detectors should
 - operate in strong solenoidal field & intense RF-cavity background
 - contribute negligible emittance degradation

 \Rightarrow e.g. scint. fibers or silicon pixel detectors $\rightarrow \Delta \epsilon_{out} / \epsilon_{in} \sim 10^{-3}$

 \rightarrow can shield from cavity backgroun d with LH₂ absorbers

Cooling Experiment – US designs (R. Palmer & R. Fernow, BNL)

201 MHz: 2 geometries considered: •

	$\mathbf{E}_1 = E_2 ?$	$n_{absorbers}$	rf grad MV/m	rf phase deg	$rac{\Delta\epsilon_{\perp}}{\%}$	rf Power MW	simulated
a	yes	1/2+1+1/2	15.5	30	8	32.3	yes
b	no	1+1+1	15.5	30	12	32.3	
с	yes	1/2+1+1/2	8.7	90	2	10.3	yes
\mathbf{d}	no	1+1+1	8.7	90	12	10.3	
e	yes	0+1+0	7.7	30	4	8.1	yes
f	no	1 + 0 + 1	7.7	30	8	8.1	TACK.
g	yes	0+1+0	4.4	90	4	2.6	
h	no	1+0+1	4.4	90	8	2.6	
i	no	0+1+0	0	0	4	0	
j	no	1 + 1 + 1	0	0	12	0	

Options & Performance

First Look at RF-Cavity Radiation

- 805-MHz open-cell cavity has been tested in Lab G up to ≈13-MW input power (max on-axis gradient 23.5 MV/m, max surf. field 53 MV/m) – tested with and without solenoidal field
- Dark current measured with pickup coil up to ≈700 mA seen
- e^- energy limited to $\approx 10 \text{ MeV} \Rightarrow P_{e^-} < 7 \text{ MW}$
- X-ray rate under study
 - preliminary look \Rightarrow some orders of magnitude below e^{-} rate
- Major hurdle to overcome:
 - 2.5-T solenoidal field enhanced & focused discharges
 - coated inside of 5-mil Ti window with copper
 - punched pinhole in Ti window
- \Rightarrow Need R&D on reducing discharge rate
 - surface treatment
 - coatings
- → Note closed-cell cavities will have ≈1/2 the surface field for same gradient

0.01

E 0.001

1000.0 E

1E-05

1E-06

1E-07

1E-08

1E-10

1E-11

Cum

Available Beams/Facilities

fact

Comparison between beams

Single particle muon beams:

Beam	Momentum (MeV/c)	ΔP Δ(%)	Muon Intensity (during 1 s)	Area (m ²)	Exists
BNL D2	100 - 250	10	50,000 / 5 ms	5 x 3	Yes
CERN – TT1	200 - 450	?	720 / 0.1 ms	> 30 x 4	No
CERN – East Hall	200 - 450	?	1,000 / 0.5 ms	30 x 5	No
$PSI-\mu E1$	85 - 310	1 (?)	> 50,000 / 5 ms	30 x 5	Yes
RAL - ISIS	100 - 500	~ 2	20,000 / 5 ms	30 x 5	Yes
TRIUMF – M20	20 - 180	5	5,000 / 5 ms	12 x 4	Yes

Kirk McDonald Monday, 28th May 2001

- We plan proposals to PSI & RAL
 both labs interested
- Host lab should provide beamline & infrastructure
- Natural opportunity for important European contribution

PSI-µE1

Organization of International Collaboration

14

• Starting at NuFact'01, we have formed the Muon Cooling Demonstration Experiment Steering Committee (MCDESC):

Alain Blondel (Chair), U. Geneva Rob Edgecock, Rutherford Steve Geer, Fermilab Helmut Haseroth, CERN Daniel M. Kaplan, IIT Yoshitaka Kuno, Osaka U. Michael S. Zisman, LBNL

• We have designated the Technical Team Leaders:

Particle detectors: A. Bross, V. Palladino RF radiation (dark current and X-Ray) issues: E. McKigney, J. Norem Magnet systems: H. Haseroth (provisional), M. Green RF cavities and power supplies: R. Garoby, R. Rimmer Hydrogen absorbers: M. A. Cummings, S. Ishimoto Concept development and simulations: A. Lombardi, P. Spentzouris Beamlines: R. Edgecock, C. Petitjean

 We have held 3 video meetings so far Workshop upcoming at CERN Oct. 25–27 (see http://muonstoragerings.cern.ch/October01WS/oct01ws.html)

Schedule (Goals & Milestones):

Summer–Fall '01:	Explore & simulate alternative designs
Sept. 14 '01:	RAL S.o.I. for ISIS beamline upgrade
Oct. 25–27 '01:	CERN Workshop – 1st cut at design parameters
Nov. '01:	Key design parameters settled
Nov. 16 '01:	Deadline for preliminary proposal to PSI
Spring '02:	Detailed technical proposal
2004:	Experiment operational

<u>Cooling Experiment – Preliminary cost estimate</u>

• A possible scenario (Palmer-Fernow option "a"):

item	unit cost (\$)	#	NRE	total cost (\$)
4-cell 201-MHz cavity	0.5M	2	0.3M	1.3M
5-MW tetrode RF power source	1.2M	8	1 M	9.6M
Lattice solenoids:				
Focus coil pair	1 M	3	1 M	4M
Coupling coil	1 M	2	1 M	3M
Detector solenoids	1 M	2		2M
Absorber	0.1M	3	0.5M	0.8M
Absorber cryo & safety			1–3M	1-3M
Detectors	0.1M	10		1 M
Infrastructure (non-beam)	≈5M			≈5M

TOTAL

≈\$30–40M

- This is too expensive for existing R&D budgets
- \Rightarrow New international proposal under development
- Likely U.S. contributions: absorbers, cavities, some detectors

Summary

- Scope of the Muon Cooling Demonstration Experiment defined
- Well on the way to specifying the experimental details
- International collaboration formed and leadership structure in place
- Need to line up necessary resources
- Strong endorsement from MUTAC will be crucial to doing so