Mercury targets

A. Fabich ENG Target and Collector Section 26. March 2003

TOC

- target configurations
- Tests on liquid targets with free surface
- Laser induced cavitation
- Radiation aspects of high power targets
 Matteo Magistris

Primary Target Configuration

Contained SNS, ESS, MegaPie, ...

Hot issues: - cavitation

- corrosion
- beam window

R&D at Oakridge (US), Juelich (D), Villigen (CH), ...

Free Surface

v-factory, ...

Hot issues: - violent explosion - mechanical challenge

- Less experience

Liquid Targets with free surface

- jet
- Mercury
- v~20 m/s
- D= 1-2 cm

To avoid beam window

- increased meson yield for high-Z materials
- Replace target at 50 Hz
- Optimized for re-absorption of mesons

??? What is the impact on the jet by

- 4 MW proton beam
- 20 T solenoid field

Liquid Metal Target Studies

(v-Factory, μ -Collider, EURISOL or n-spallation source)

Proton induced shock wave

ISOLDE[€] and **BNL**^{\$}

Jet test at BNL E-951

Event #11 25th April 2001

Picture timing [ms] 0.00 0.75 4.50 13.00

P-bunch:

Hg-jet:

2.7×10¹² ppb 100 ns $t_0 = ~0.45 \text{ ms}$ diameter 1.2 cm jet-velocity 2.5 m/s

perp. velocity $\sim 5 \text{ m/s}$

K. Mc Donald, H. Kirk, J.Lettry, A. Fabich

MHD

Grenoble High Magnetic Field laboratory (setup)

- mercury jet
- d_{nozzle}=4 mm
- colinear/inclined injection
- $v_{jet} \le 12 \text{ m/s}$
- B-field up to 20 Tesla

nozzle

B-field

Distance from nozzle Tesla

MHD

Jet traverses B_{max}

This qualitative behaviour can be observed in all events.

Experimental results

Detailed information can be found in

A.Fabich

High Power Proton Beam Shocks and Magnetohydrodynamics in a Mercury Jet Target for a Neutrino Factory

CERN-THESIS-2002-038

Ongoing/needed R&D

- On-going:
 - Estimation of the isotopic inventory and thermal shocks on solids
 R. Wilfinger
 - Corrosion under radiation (Megapie, PSI; FZ Rossendorf)
 - Mitigation of molten metals with micro bubbles to suppress cavitations
 - US MuMu
 - Other target concepts
- Needed:
 - Establish a nominal mercury jet
 - Evaluation of new observation methods for mercury jet experiments RADAR?
 - Radiactive mercury Waste disposal, solidification of mercury into amalgams, production of carrier free rare earth isotopes

Study of cavitation bubble and shock wave interaction with free surface

Etienne ROBERT

Mohamed FARHAT

École Polytechnique Fédérale de Lausanne

Shock wave interaction with free surface

Faculté STI Sciences et Techniques de l'Ingénieur

 Energy (12.5 J) deposited by a internal combustion engine spark plug.

HYDRAULIC MAC

- Shock wave is reflected on the free surface.
- Minor effect on the interface integrity.

Bubble collapse near free surface

Faculté STI Sciences et Techniques de l'Ingénieur

 Vicinity of interface causes formation of a microjet.

HYDRAULIC MACHIN

- The microjet goes trough the interface with great velocity.
- Surrounding liquid is pulled by the microjet, forming a liquid dome.

