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This paper updates and improves the study of electron neutrino appearance in the framework of two far
detectors at different oscillation maxima, specifically, Tokai-To-Kamioka-to-Korea. We used a likelihood based
on reconstructed quantities to distinguish charged current νe interactions from neutral current background. We
studied the efficiency of the likelihood for a 20% photo-coverage in comparison of a 40% photo-coverage. We
used a detailed neutrino event simulation to estimate the neutral current background. With these analysis tools
we studied the sensitivity of the proposed experiment to CP violation and mass hierarchy as a function of the
off-axis angle.

PACS numbers: PACS numbers: 14.60.Pq, 11.30.Er

I. INTRODUCTION

The θ13 angle, the hierarchy of the largest mass splitting,
and the CP violating phase are remaining undetermined quan-
tities in the PMNS matrix formulation of neutrino masses
and mixing [1, 2]. CP violation in the lepton sector and
its relation to the matter anti-matter asymmetry of the uni-
verse is especially interesting. To determine the CP violating
phaseδ and the neutrino mass hierarchy, a powerful approach
is to measure electron neutrino appearance at both the first
and second oscillation maximum in a long baseline neutrino
beam. Two different approaches have been considered in or-
der to make this comparative measurement. One approach is
to have two detectors at two different baselines of the same
beam, one positioned for optimum response at the first os-
cillation maximum and the other positioned for optimum re-
sponse at the second oscillation maximum. The optimum re-
sponse is achieved using the off-axis technique [3] to achieve
a narrow energy band. This is the approach of the Tokai to
Kamioka to Korea [4], henceforth referred to by the unofficial
acronym T2KK. Another approach is to use an on-axis wide-
band beam, and measure electron neutrino appearance from
both the first and second maxima with a single detector [5].
This is the approach employed by the BNL-FNAL working
group [6] as a model for a long baseline neutrino oscillation
experiment in the United States.

In the first published T2KK article [4], the off-axis angle of
the Korean detector was assumed to be fixed at 2.5◦. In this
article, we study the sensitivity to CP violation and mass hi-
erarchy if we choose a smaller off-axis angle for the location
of the Korean detector, which blends the two approaches de-
scribed above. As one can see in Fig. 1, the off-axis angle of
1.0◦ results in a fairly wide band beam, and we anticipate see-
ing electron neutrino appearance at both the first and second
maximum in the Korean detector. The detector at the Kamioka
location would remain at 2.5◦ off-axis, and be mainly sensi-
tive to the first oscillation maximum.

For this study, we assume an upgraded 1.66 MW J-PARC
beam created from 40 GeV protons, running 107 seconds
per year. This is equivalent to 2.59× 1021 protons-on-target

(POT) per year. We assume 5 years of neutrino running and
5 years of anti-neutrino running. Theνµ flux observed at four
different off-axis angles, at 1050 km from the target, is shown
in Fig. 1. We also assume two 0.27 Mton (fiducial volume)
water Cherenkov detectors with 40% photo-coverage. One of
them would be located at Kamioka, at a baseline of 295 km
and at 2.5◦ off-axis angle from the beam. The second de-
tector would be located in Korea at distances ranging from
1000 to 1200 kilometers and off-axis angles ranging from 1◦

to 2.5◦. The beam intensity assumed for this article is a factor
of 2.4 lower than the beam assumed previously [4]. This more
conservative beam power is being considered for benchmark
studies [7]. In addition we assumed that a year of running is
107 seconds instead of 1.12× 107, so combining the change
in beam intensity and running time, the number of POT per
year is a factor of 2.7 lower than in previous studies.

Our tool for these studies is the fully reconstructed at-
mospheric neutrino Monte Carlo sample from the Super-
Kamiokande experiment [8], whereas the earlier paper used
event rates calculated for the T2K experiment scaled for dis-
tance. In order to simulate the T2KK beam, we re-weight
events in the Super-K atmospheric neutrino Monte Carlo sam-
ple by the ratio of the T2KK flux to the atmospheric flux.

II. SIGNAL VS. BACKGROUND LIKELIHOOD ANALYSIS

Our objective is to identify and reconstruct an excess of
charged currentνe interactions in a nearly pureνµ beam. We
shall be especially interested in quasi-elastic interactions such
asνen→ e−p. In the experiment considered, the appearance
probability is a few percent at most, and only a small number
of events are anticipated above a non-negligible background.
There are three categories of background:

• νe beam: The irreducible background from electron
neutrinos in the beam flux regardless of neutrino oscil-
lation. These come mainly from muon decay andKe3.

• Neutral current (NC): Background where the hadronic
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FIG. 1: (Color online) Neutrino flux as a function of energy for sev-
eral off-axis angle, and a 0.75MW beam at 1050km from the target.
For comparison, theνµ → νe probability, for two baselines consid-
ered for T2KK (295km and 1050km). Neutrino mixing parameters
are: normal hierarchy,∆m2

(21,31) = 8.0×10−5,2.5×10−3eV2, and

sin2 2θ(12,23) = 0.86,1.0. We take the earth density to be constant

and equal to 2.8 g/cm3.

recoil of neutral current interactions are misidentified as
electron showers.

• νµ mis-ID: Background due to muons mis-identified as
electron showers.

The irreducibleνe beam background is estimated from the de-
tails of hadron production and muon decay in the beam Monte
Carlo. We take as input the calculated flux from a beam simu-
lation assuming a graphite cylinder target, 30 mm in diameter
and 900 mm in length and a 130 m decay tunnel. These are
the parameters of the T2K experiment. The neutral current
background mainly consists of hadronic recoils with a single
π0. Theπ0 decays into two photons and if one of the photons
is missed because of a very small energy or an overlapping
ring, then the event can be misidentified as a single electro-
magnetic shower and therefore fake aνe CCQE event. The
dominant case is when one of the photons was missed be-
cause the energy was too small. Theνµ mis-ID background
consists of charge currentνµ events where the Cherenkov ring
from the outgoing muon is mis-identified as an electron by
the reconstruction algorithm. This is the smallest source of
background.

Since we are interested inνe appearance and especiallyνe
undergoing quasi-elastic interactions, the events that wewant
to select are fully contained inside the fiducial volume, have
a single Cherenkov ring identified as electron-like, and with
no decay electron present (which would signal missedπ+ in a

multipion final state). These are referred to as pre-cuts. Before
building the likelihood, we applied these pre-cuts, in order to
remove a significant part of the background.

The pre-cut efficiencies are listed in Table I. The NC effi-
ciency is based on the total cross section for neutral current
interactions which includes a large component of neutrino-
nucleon elastic scattering. These are mostly unobserved ina
water Cherenkov detector. The NC background events that
pass the pre-cuts are mostly single-π0 production.

Signal Background

Trueν energy νe (avg) QE νe non-QEνe NC νµ mis-ID

0 - 0.35 GeV 93% 93% 55% NA NA

0.35 - 0.85 GeV 85% 95% 41% 4% 0.3%

0.85 GeV - 1.5 GeV 63% 92% 39% 8% 0.3%

1.5 - 2.0 GeV 48% 85% 31% 10% 0.7%

2.0 - 3.0 GeV 41% 83% 29% 11% 0.8%

3.0 - 4.0 GeV 34% 76% 24% 12% 0.9%

4.0 - 5.0 GeV 32% 71% 27% 11% 0.4%

5.0 - 10.0 GeV 25% 67% 21% 7% 1.6%

TABLE I: Efficiency of pre-cuts as applied to neutrino interactions
in the fiducial volume of the Super-Kamiokande detector simulation.
The charged currentνe interactions are broken down separately for
quasi-elastic and non-quasi-elastic samples. The NC sample includes
elastic scattering in the denominator of the efficiency calculation.

After applying pre-cuts, we make the final event selection
using a likelihood based on several event characteristics and
using the ROOT package TMVA [9]. This is a similar ap-
proach to one previously studied by others [10]. We recon-
struct the neutrino energy assuming quasi-elastic interactions.
This depends on particle masses, the reconstructed momen-
tum and energy of the outgoing lepton, and the angle between
the outgoing lepton direction and the known neutrino beam
direction (θνe):

Erec =
mnEe−m2

e/2
mn−Ee+(Pecosθνe)

. (1)

The variables that are used in the likelihood can be divided
into three categories:

• Basic Super-Kamiokande event parameters:

– The ring-finding parameter used to count rings

– Thee-like/µ-like particle identification parameter

• Light-pattern parameters used forπ0 finding:

– Theπ0 mass

– Theπ0 likelihood

– The energy fraction of the 2nd ring

• Beam related variable:

– The angle between the outgoing lepton and the
beam direction
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We already cut on the ring parameter and the PID parameter in
the set of pre-cuts (Table I). Here we used the continuous dis-
tribution of these parameters as input to the likelihood. There
are three variables related to a specialized fitter (POLfit for
Pattern-Of-Light fitter) used to select singleπ0 events [11].
The output of this fitter includes an overall likelihood as well
as the best fit mass and energy fraction of the two gammas
from π0 decay. We also use one variable that requires knowl-
edge of the beam direction, and therefore is not a standard SK
variable for atmospheric neutrino analysis. For that variable,
we had to use the MC truth information about the neutrino
direction in the simulated atmospheric neutrino Monte Carlo
sample. Unlike the accelerator-based experiment, these events
are simulated over a wide-range of incident angles. However,
the Super-K detector has uniform response. The distributions
of the combined likelihood for each energy bin is shown in
Fig 2. The separation between signal and background is strik-
ing at low energies but becomes worse at higher energies.
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FIG. 2: (Color online) Combined likelihood distribution from 6 input
variables, shown separately for 8 energy bins. Charged current νe
signal is shown in blue (filled), and the background is red (hatched).
The events used have passed the defined pre-cuts.

To choose where to cut on the likelihood variable, we com-
pute the signal over square root of background,S/

√
B for

several positions of the cut. We tested cuts that range from
keeping 10% of signal to keeping 100% of the signal (at the
expense of increasing background). We also varied the off-
axis angle and considered separate energy bins. We found
that keeping a large fraction of signal, 80%, maximizesS/

√
B.

The energy dependent efficiencies for an 80% likelihood cut
is given in Table II.

A. Photo coverage

Due to the accident that happened in November 2001,
where about half of the Super-Kamiokande phototubes were
destroyed, Super-K has run with both 40% and 20% photo-
coverage, and has atmospheric neutrino Monte Carlo samples
for both conditions. It was therefore easy to repeat our studies

Cut that keeps 80% of signal

Energy (rec) νe NC νµ mis-ID

0 - 350 MeV 80% 15% 15%

350 - 850 MeV 80% 25% 40%

850 MeV - 1.5 GeV 80% 28% 30%

1.5 - 2.0 GeV 80% 30% 32%

2.0 - 3.0 GeV 80% 40% 18%

3.0 - 4.0 GeV 80% 50% 28%

4.0 - 5.0 GeV 80% 65% 55%

5.0 - 10.0 GeV 80% 45% 18%

TABLE II: Efficiency for the likelihood cut that keeps 80% of the
signal. These efficiencies are calculated for events which have al-
ready passed the pre-cuts, and are calculated based on reconstructed
energy.

νe NC νµ

Photo-cov. Photo-cov. Photo-cov.

Energy (true) 40% 20% 40% 20% 40% 20%

0 - 350 MeV 93% 92% NA NA NA NA

350 - 850 MeV 85% 84% 4% 3% 0.3% 0.6%

850 MeV - 1.5 GeV 63% 65% 8% 9% 0.3% 0.6%

1.5 - 2.0 GeV 48% 53% 10% 11% 0.7% 0.7%

2.0 - 3.0 GeV 41% 47% 11% 12% 0.8% 0.9%

3.0 - 4.0 GeV 34% 42% 12% 13% 0.9% 0.9%

4.0 - 5.0 GeV 32% 39% 11% 12% 0.4% 1.0%

5.0 - 10.0 GeV 25% 29% 7% 10% 1.6% 1.6%

TABLE III: Pre-cut efficiency for two photo-coverage: 40% (SK-I)
and 20% (SK-II). The NC sample includes elastic scattering in the
denominator of the efficiency calculation.

for a detector with a 20% photo-coverage. Overall we found
that both the pre-cuts and the likelihood are nearly as efficient
in a detector with 20% coverage as they are in a detector with
40% coverage. The comparison of the pre-cuts is presented in
Table III and the comparison of the likelihood is presented in
Table IV.

III. HOW TO COMPUTE THE BACKGROUND
SPECTRUM

As mentioned in Section II, there are three categories of
background: νe beam background (νe beam), neutral cur-
rent background (NC), and charged currentνµ mis-identified
background (νµ mis-ID). To simulate the background in the
long baseline beam experiment, we used the SK atmospheric
Monte Carlo as follows:

• We ran over the atmospheric SK Monte Carlo, and kept
events which passed all the pre-cuts.

• We applied the likelihood efficiency corresponding to
the right background type (νe, νµ mis-ID or NC) and
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νe NC

Photo-coveragePhoto-coverage

Energy (rec) 40% 20% 40% 20%

0 - 350 MeV 80% 80% 15% 15%

350 - 850 MeV 80% 80% 25% 24%

850 MeV - 1.5 GeV 80% 80% 28% 25%

1.5 - 2.0 GeV 80% 80% 30% 35%

2.0 - 3.0 GeV 80% 80% 40% 40%

3.0 - 4.0 GeV 80% 80% 50% 42%

4.0 - 5.0 GeV 80% 80% 65% 50%

5.0 - 10.0 GeV 80% 80% 45% 45%

TABLE IV: Likelihood efficiency for two photo-coverages: 40%
(SK-I) and 20% (SK-II). The likelihood cut keeps 80% of signal.
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FIG. 3: Smearing matrix for neutral current events: the result of
energy reconstructed using Eqn. 1 versus true neutrino energy.

using the reconstructed energy. This takes care of the
likelihood efficiency, and also the energy resolution of
the detector since we use reconstructed energy.

• We re-weighted this background spectrum by the ratio
of the beamνµ flux to the atmospheric flux.

• We normalized the final background spectrum in order
to account for the running conditions of the experiment:
volume of detector, beam power, etc.

It is important to consider the neutral current background
properly since its energy response is very uncorrelated, ascan
be seen in Fig. 3.

IV. OFF-AXIS ANGLE ANALYSIS

Using the cut on the likelihood that keeps 80% of the signal,
we present in Fig. 4 spectra at the Kamioka location and at the

Korean location for 1◦ off-axis angle and 2.5◦ off-axis angle.
We also present the sensitivity to mass hierarchy and CP vio-
lation, for four different values of the off-axis angle position
of the Korean detector. Theχ2 analysis used to compute the
sensitivity is similar to that previously used [4] and is defined
as:

χ2 =
Nexp

∑
k=1

(

NEbin

∑
i=1

(N(e)obs
i −N(e)exp

i )2

σ2
i

)

+
15

∑
j=1

(

ε j

σ̃ j

)2

, (2)

where

N(e)exp
i = NBG

i · (1+
7

∑
j=1

f i
j · ε j)+Nsignal

i · (1+
13

∑
j=8

f i
j · ε j)

+ N∆E scale
i · (1+

15

∑
j=14

f i
j · ε j) (3)

Here,Nexp is the number of “experiments”. For example if we
have two detectors (Kamioka and Korea) and run with only
neutrinos thenNexp= 2. If we have two detectors but run with
neutrinos and anti-neutrinos thenNexp= 4. Compared to the
publication of Ishitsukaet al., we added two energy bins and
use events up to 3 GeV, which is relevant when the Korean de-
tector is located at small off-axis angles. So for this analysis,
we haveNexp= 4 since we ran for neutrinos and anti-neutrinos
and have two detectors. We have 7 energy bins (NEbin): 400-
500 MeV, 500-600 MeV, 600-700 MeV, 700-800 MeV, 800-
1200 MeV, 1200-2000 MeV, 2000-3000 MeV. The sum over
j in Eq. 2 is the sum over the systematic errors. We consider
fifteen systematic errors̃σ j in this study. They are presented
in Table. V and they are split into three groups. The first seven
errors are on the background, the next six on the signal, and
the last two on the energy scale. The largest systematic un-
certainty comes from the signal normalization above 1.2 GeV,
and this is due to the uncertainty on the number of rings for
Multi-GeV electron-like events [12]. The systematic uncer-
tainties were estimated using work by the Super-Kamiokande
collaboration [8, 12, 13].

The results for the mass hierarchy and CP violation sensi-
tivity are presented in Fig. 5 and Fig. 6. We find that the best
sensitivity to both CP violation and mass hierarchy is achieved
with the Korean detector located at 1◦ off-axis. The improve-
ment in sensitivity to CP violation is rather minimal, however
the sensitivity to mass hierarchy is improved by a factor of
three compared to the original configuration with the Korean
detector located at 2.5◦ off axis. This is due to the informa-
tion gained by including the first oscillation maximum, with
higher energy neutrinos, in the Korean far detector.

We note that several improvements have been made since
the T2KK article published in 2005 [4]. Several minor prob-
lems were fixed and the cut on the likelihood variable was
added. This allowed us to gain a significant number of signal
events. For example in the 350-850 MeV bin, the combined
efficiency (pre-cuts and likelihood) is 68%, where in the same
bin of Ref. [4] it was 40%. In addition, the likelihood cut al-
lows us to increaseS/

√
B. Again for the 350-850 MeV bin,
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FIG. 4: (Color online) Reconstructed energy spectra at Kamioka (top), Korea 1.0◦ off-axis (bottom left) and Korea 2.5◦ off-axis (bottom
right) for sin2(2θ13) =0.04 and normal hierarchy. The remaining oscillation parameters are:∆m2

(21,31) = 8.0× 10−5,2.5× 10−3eV2 and

sin2 2θ(12,23) = 0.86,1.0. Each plot is normalized to 5 years of running with neutrino, a 1.66 MW beam with 40 GeV protons and in a 0.27

Mton (FV) detector (i.e. 5×2.59×1021 POT).

theS/
√

B was increased by about 20%. If we had run with the
same number of protons-on-target as the authors of the 2005
paper, the sensitivity would be a factor of two better than what
we are reporting for 2.5◦ off-axis angle. Conversely, with the
conservative benchmark beam power of 1.66 MW instead of
4MW, our sensitivity with the Korean detector located at 2.5◦

off-axis is roughly equivalent to that of the 2005 paper.

V. CONCLUSIONS

We have presented an updated and improved study of long
baseline neutrino oscillation with a detector in Kamioka and a



6

10
-2

10
-1

0 1 2 3 4 5 6

normal

2σ
3σ

T2KK OA=1.0˚
T2KK OA=1.5˚

T2KK OA=2.0˚
T2KK OA=2.5˚

10
-2

10
-1

0 1 2 3 4 5 6

inverted

δ

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 s
in

2 2θ
13

10
-2

10
-1

0 1 2 3 4 5 6

normal

10
-2

10
-1

0 1 2 3 4 5 6

inverted
2σ
3σ

T2KK OA=1.0˚
T2KK OA=1.5˚
T2KK OA=2.0˚
T2KK OA=2.5˚

δ

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 s
in

2 2θ
13

FIG. 5: Sensitivity to CP violation (left) and mass hierarchy (right) for different values of the off-axis angle. Other mixing parameters are the
same as used in previous figures. Each plot considers 5 years of running with neutrinos and 5 years with anti-neutrinos, a 1.66 MW beam with
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FIG. 6: Sensitivity to CP violation (left) and mass hierarchy (right) for different values of the off-axis angle. Other mixing parameters and the
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Index Systematic uncertainty Value

1 BG normalization below 1.2 GeV (for Kamioka) 5%

2 BG normalization above 1.2 GeV (for Kamioka) 5%

3 BG normalization below 1.2 GeV (for Korea) 5%

4 BG normalization above 1.2 GeV (for Korea) 5%

5 BG normalization betweenνe andν̄e below 1.2 GeV 5%

6 BG normalization betweenνe andν̄e above 1.2 GeV 5%

7 BG spectrum (common for Kamioka and Korea) 5%

8 Signal normalization below 1.2 GeVσ(νµ)/σ(νe) 5%

9 Signal normalization above 1.2 GeVσ(νµ)/σ(νe) 20%

10 [σ(νµ)/σ(νe)]/[σ(ν̄µ)/σ(ν̄e)] below 1.2 GeV 5%

11 [σ(νµ)/σ(νe)]/[σ(ν̄µ)/σ(ν̄e)] above 1.2 GeV 5%

12 Efficiency difference between Kamioka and

Korea detector below 1.2 GeV 1%

13 Efficiency difference between Kamioka and

Korea detector above 1.2 GeV 1%

14 Energy scale difference between Kamioka and

Korea detector 1%

15 Energy scale difference between near and

(Kamioka/Korea) detector 1%

TABLE V: List of systematic uncertainties and their assumedvalues.

second in Korea. Using precuts and a likelihood designed to

reject neutral current background while keeping charged cur-
rent quasi-elastic events, we were able to increase the amount
of signal that we keep in the main signal bin (350-850 MeV)
from about 40% to 68%, and we were able to remove more
background than what was done before. We found that the
effectiveness of the cuts and likelihood was relatively undi-
minished when applied to a detector with 20% rather than
40% photocoverage. We found that the best location among
the possibilites we explored for the Korean detector is 1.0◦,
which is more on-axis than previously considered, and allows
a somewhat wider band neutrino energy spectrum. This im-
proved the T2KK sensitivity by a factor of two compared to
what was published previously, even after taking a more con-
servative number of POT per year to be a factor of three lower.
With an experiment configured at 1.0◦, and a benchmark beam
power of 1.66 MW, the neutrino mass hierarchy should be re-
vealed if sin22θ13 is larger than 10−2 for a wide range ofδ.
CP violation would be detected at 3σ significance for 70% of
possible values ofδ.
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