Comparison of Different Detectors with same Beam

- Background about the Background
- Beam Description
- Description of Detectors
- Baseline Optimization
- A Word about Matter...
- Conclusions

Deborah Harris Fermilab January 18, 2002 Large Detectors for ... Low Energy Neutrinos from High Intensity Sources

Backgrounds in Conventional Beams

If signal is $\nu_{\mu} \rightarrow \nu_{e}$ or $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$:

Intrinsic ν_e Contamination

$$K^{\pm} \to \pi^{0} e^{\pm} \nu_{e}(\bar{\nu}_{e})$$
$$\mu^{\pm} \to e^{\pm} \bar{\nu}_{\mu}(\nu_{\mu}) \nu_{e}(\bar{\nu}_{e})$$
$$K_{L} \to \pi^{\pm} e^{\mp} \nu_{e}(\bar{\nu}_{e})$$
Charm $\to X e^{\pm} \nu_{e}(\bar{\nu}_{e})$

 π^0 production in NC and CC (high y) events

 ν_{τ} Charged Current Events Important for $E_{\nu} > 7GeV$

Intrinsic ν_e Background							
Protons	π Kaons	π,Κ,(μ)	μ,ν				
(1	focus maybe bend)	Let them decay	Shielding (>.2km)				
Beamline	Peak ν_{μ} Energy (GeV)	$ \nu_e/ u_\mu $ event ratio	p Energy GeV				
K2K	1.4	0.7%	12				
MINOS LE	3.5	1.2%	120				
MINOS ME	7	0.9%	120				
MINOS HE	15	0.6%	120				
CNGS	17	0.8%	400				
JHF wide	1	0.7%	50				
JHF HE	5	0.9%	50				
MiniBoone	0.5	0.2%	8				
ORLaND	0.0528	0.05?%	1.3				
× 10 ⁻²							
0.45 0.45 0.35 0.25 0.25 0.25 0.25 0.15 0.15 0.15 0.15 0.05 0.05 0.1 0.1	K ⁺ ,μ ⁺ K _L Beam Energies from 5 to 17 GeV	0.002 0.004 0.002	K ⁻ ,μ ⁻ K _L				

- fine-grained calorimeter (THESEUS) longitudinal shower development (1/40)
- Water Cerenkov (K2K) $(10^{-2} \text{ below } 1\text{GeV})$

 $\nu_{\mu} \rightarrow \nu_{\tau}, \tau \rightarrow e$

Today's discovery is tomorrow's background... $BR(\tau \to e(\gamma)\nu_{\tau}\bar{\nu}_{e}) = 0.20, BR(\tau \to n\pi^{0}X\nu_{\tau}) = 0.37,$ ν_{τ} flux is $\propto \sin^{2} 2\theta_{23} \sin^{2}(\delta m_{23}L/E)$ i.e. $\mathcal{O}(1)...$ Kinematic Handle on $\tau \to e$: electron energy

Backgrounds in Conventional Beams Executive Summary								
Dependence on								
Background	Baseline	Detector	Beamline	Rate				
NC/CC π^0 production	$1/L^{2}$	a lot	some	$10^{-1} \rightarrow 10^{-3}$				
$ \begin{array}{l} \nu_{\mu} \to \nu_{\tau} \\ \tau \to e \end{array} $	flat	some	some	$10^{-1} \rightarrow 0$				
Intrinsic ν_e	$1/L^{2}$	barely	all	$10^{-2} \rightarrow 10^{-3}$				

Rules of the game...(for this talk)

First Caveat:

I will only talk about measuring ν_{μ} to ν_{e} , without considering a measurement of CP violation or of matter effects.

Question: How can we remove these back-grounds?

- intrinsic ν_e contamination
- Neutral Current Contamination $(\pi^0 \text{ mis-identification})$

How well you remove backgrounds depends on your detector...

- Make a really narrow energy neutrino beam -cut on energy
- Make a very clean beam, no "high energy tails"

• Low intrinsic ν_e contamination

-0.5% under the peak

- 0.4MW proton source, 10^{-5} duty cycle
- Beamline Design is Complete
- Target, Decay Pipe Region Fully Excavated
- Prototype horn has been pulsed over 2M times
- Will start running by the end of 2004
- \Rightarrow MINOS Off-Axis Beam (1.5mrad)

For 10km off, could be as far as 911m away!

And that one isn't even the only one!

Following example from BNL-889 and JHF-SK (D. Beavis et al., BNL No. 52459, April 1995):

Neutral Currents On and Off Axis

Optimize, Optimize, Optimize

Problem: Given a beam flux, the basline where you are the most sensitive depends on:

- Mass of Detector
- f_s Signal efficiency
- f_b Background efficiency
- ϵ_b Systematic uncertainty on f_b
- Δm^2 (maybe even the sign)

How is a person to chose?

Argument we've all heard (made?) before: $\Phi \sim 1/L^2$, $\sin^2(\Delta m^2 L/E) \sim L^2$ -not so fast!

Detectors to Consider

Requirements: Electron Appearance!

- Good Longitudinal and transverse segmentation
- Good Energy Resolution to remove NC and ν_e events
- Particle ID at the 10^{-2} level at least!

Vital Statistics of Detectors: (as defined for this study)

• NC Background "Efficiency"

 $f_{NC} = \frac{\text{NC Events accepted after all cuts}}{\nu_{\mu} \text{ events in energy peak}}$ • Detector Signal Efficiency

 $\epsilon_s = \frac{\text{NC Events accepted after all cuts}}{CC\nu_{\mu}\text{events in energy peak}}$

• Mass

Target	Readout	Segment	ho	ϵ_s	f_{NC}
MINOS ^a	Scint	$1.4X_0$	~ 4	40%	0.7 %
Steel^b	Scint	$0.25X_{0}$	~ 4	28%	0.15%
$Plastic^{c}$	Glass	$0.5X_{0}$	0.75	35~%	0.1%
Pellets	RPC				
$ICARUS^d$	TPC	a lot	1.4	90%	0.01%
$H_2 O \check{C}^e$	PMT's	n/a	1	24.0%	1.%

References:

^a M.Diwan, M.Messier, B.Viren, L.Wai,

NUMI-L-714

- ^b M. Szleper, M.Velasco
- c A. Para
- d M. Campanelli, and ICANOE Proposal
- e D. Casper

Caveats:

All of above numbers come from geant-based monte carlos studies, but Water Cerenkov monte carlo has many more backgrounds included, also noise, detector inefficiencies, etc, and has been **TUNED WITH REAL DATA!!!**

MINOS-type Detector

NC Background: 0.68%Beam Background*acceptance= 0.2%Acceptance 40%

Ref: M.Diwan, M.Messier, B.Viren, L.Wai, NUMI-L-714

4.5mm Steel Detector

NC Background: 0.15%Beam Background*acceptance= 0.12%Acceptance 28\%

M.Szleper, M.Velasco, Northwestern University

Recycled Plastic Pellet Detector

NC Background: 0.11% Beam Background*acceptance= 0.16% Acceptance 35%

A. Para, Fermilab

ICARUS Detector

NC Background: 0.05% Beam Background*acceptance= 0.4% Acceptance 90% Note lower mass!

M.Campanelli, and ICANOE proposal

Water Cerenkov Detector

NC Background: 5.6% Beam Background*acceptance= 0.4% Acceptance 90% Note high mass

Two plots: 1.5% and 5% Systematic Errors assumed

Analysis by D.Casper, UC Irvine

How does this change with matter effects put in?

2-generation matter effects , constant density If mass hierarchy is in the "charged fermion" direction, this will tend to enhance the appearance probability. $\sin^2 2\theta_{13}$ one can see at 3σ will get lower. Also, as L increases, the enhancement factor increases almost enough to account for the $1/L^2$ But: if the mass hierarchy goes the other way, then you're in this position for antineutrino running. Unfortunately $\sigma^{\bar{\nu}}/\sigma^{\nu}$ still around 0.5...

Detectors considered can see $\sin^2 \theta_{13}$ at about 2 to 3%, which is a factor of 4 better than CHOOZ. But for the following assumptions:

- "Standards": 20kton, 5% bkgd uncertainty
- $\Delta m_{23}^2 = 3.0 \times 10^{-3} eV^2$, $\theta_{23} = 45^{\circ}$
- Liquid Argon needs 1/8th the "standard mass"
- Water Cerenkov needs 2.5 times the mass, 1/3 the syst. err

- Otherwise, can measure $\sin^2 2\theta_{13}$ at 3σ if it's a factor of 5 or so past the CHOOZ limit
- What if we get more proton power?
- Systematics must go below 5% –there will be MINOS on-axis near detector, preliminary studies promising (Michal Szleper, Adam Para, hep-ex/0110001)
- Have to reduce ν_e 's-maybe through using a lower proton energy, but a faster rep rate...stay tuned...

But at any rate, taking advantage of this beam is important—

matter effects are big enough that if a next generation experiment measured things at the 5 or 6 σ level, then comparisons with shorter baselines may determine the sign...