

TZK Status

Fanny Dufour, Geneva University, for the T2K collaboration.

The T2K experiment Current status of the beam Current status of ND280 Current status SK

The collaboration

~500 members, 61 Institutes, 12 countries

Canada

TRIUMF U. Alberta U. B. Columbia U. Regina U. Toronto U. Victoria York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany

U. Aachen

Italy

INFN, U. Roma INFN, U. Napoli INFN, U. Padova INFN, U. Bari

Japan

ICRR Kamioka ICRR RCCN KEK Kobe U. Kyoto U. Miyagi U. Edu. Osaka City U. U. Tokyo

Poland

A. Soltan, Warsaw
H.Niewodniczanski, Cracow
T. U. Warsaw
U. Silesia, Katowice
U. Warsaw
U. Wroclaw

Russia INR

S. Korea

N. U. Chonnam U. Dongshin U. Sejong N. U. Seoul U. Sungkyunkwan

Spain

IFIC, Valencia U. A. Barcelona

Switzerland

U. Bern U. Geneva ETH Zurich

United Kingdom

Imperial C. London Queen Mary U. L. Lancaster U. Liverpool U. Oxford U. Sheffield U. Warwick U.

STFC/RAL STFC/Daresbury

USA

Boston U. B.N.L. Colorado S. U. Duke U. Louisiana S. U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester U. Washington

Overview of the experiment

Fanny Dufour, University of Geneva, December 6th 2010, DISCRETE 2010

4

Off-axis principle

Detector is 2.5° off-axis

 \rightarrow Narrow beam

→ Most of the flux is at the optimal energy for measuring oscillation

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0

1

Physics goals (1): Neutrino oscillations

ratio Disappearance measurement: $\nu_{\mu} \rightarrow \nu_{\mu}$ 1 $P(\nu_{\mu} \to \nu_{\mu}) \approx 1.0 - (\sin^2(2\theta_{23})) \sin^2(\frac{\Delta m_{23}^2 L}{4E})$ 10 0.5 1.5Evrec (GeV Appearance measurement: $\nu_{\mu} \rightarrow \nu_{e}$ 50 $\sin^2 2\theta_{13} = 0.1$ $P(\nu_{\mu} \to \nu_{e}) \approx \left(\sin^{2}(\theta_{23})\sin^{2}(2\theta_{31})\right)\sin^{2}\left(\frac{\Delta m_{23}^{2}L}{\Lambda E}\right)$ # of events 40 Events/5 years/100MeV in 0.35 ~ 0.85 GeV Signal ... 143 30 Beam v_e BG ... 16 BG from ν_{μ} \hdots 10 20 10 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 Reconstructed v Energy (MeV)

Sensitivity to θ_{13}

90% C.L. 750kW X 5 years X 22.5 kton fid.

= 8.3 x 10²¹ POT

Physics goals (2): Cross-section measurements

Several cross-section measurements at energies around 600 MeV will be performed with the near detector.

Proton on target collected in 2010

First T2K run completed (January to June 2010)

- •3.3 ×10¹⁹ protons @ 30 GeV for T2K analysis
- •50 kW stable operation with trials at 100 kW
- •Super-K live fraction in excess of 99%
- •2011 aim: accumulate $150 \text{ kW} \times 10^7 \text{ sec by July 2011}$

Upgrade plan

Beamline overview

ND280 overview

On-axis detector:

INGRID

Off-axis detector:

tracker: FGD +TPC

POD

ECAL (downstream and barrel)

SMRD

ND280 on-axis detector: INGRID

INGRID: Timing distributions and profile

ND280 off-axis detector

Tracker: TPC + FGD

- Two detectors
 - 15 XY layers (192 bars)
 - 7 XY layers + 7 water

<u>3 Time Projection Chambers (TPC)</u>

 $1.8 \ge 2 \ge 0.70 \text{ m}^3$ sensitive area World's Largest TPC with micro-pattern read out (MicroMeGas) ~124k channels

2 Fine Grained Detectors (FGD)

2 x1.3 Ton active target FGD1: plastic only FGD2: Plastic + water Light detection by Geiger mode avalanche photodiodes (MPPC) ~ 9500 channels

Fanny Dufour, University of Geneva, December 6th 2010, DISCRETE 2010

Tracker, TPC + FGD: Timing and Event displays

PoD: π^{0} detector -- Timing and vertex distributions

DsECAL: Downstream Electromagnetic calorimeter

Timing distributions of DsECAL clusters

Interaction in FGD1 with shower in FGD2 and DsECAL

SMRD: Side muon range detector

The off-axis detector is really off-axis!

Contained vertices reconstructed in the 2 'Fiducial' detectors.

Lines show (approximate) iso-contours of off-axis angle.

Outer corner is roughly 20% further off-axis than inner corner.

Overview of events in the off-axis ND280

Super-Kamiokande overview

Stability of the detector Event rate Vertex distributions Event displays

Energy scale stability

Very stable energy scale during T2K running period

Event rates and timing

 ΔT_o : relative event time to the spill time ΔT_o : -500 ~ +500 µsec

Fitted 581 ns-interval bunch position

Out-of-time OD/LE rate is flat. No out-of-time FC events. GPS system is working correctly

Super-Kamiokande status - Selection cuts

For v_{μ} disappearance analysis	For v _e appearance search
Timing coincident w/ beam time (+TOF)	
Fully contained (No OD activity)	
Vertex in fiducial volume (Vertex >2m from wall)	
<i>E</i> _{vis} > 30MeV	<i>E</i> _{vis} > 100MeV
n^{o} of rings =1	
μ-like ring	e-like ring
	No decay electron
	Inv. mass w/ forced-found 2 nd ring < 105MeV
	$E_v^{rec} < 1250 MeV$

Event rates and vertex distributions

Vertices are evenly distributed throughout the detector

First look - in far detector (1st event at SK)

Two more mu-like events

Single ring mu-like

 P_{μ} = 1061 MeV/c -- 1 decay electron

April 27th, 2010

Multi ring mu-like

 P_{μ} = 1438 MeV/c -- 2 decay electrons

June 19th, 2010

- T2K experiment is now fully operational and data taking
- Superb detector performance both at ND280 and SK
- Proton intensity increasing steadily
- First data taking period in 2010 accumulated 3.3 10¹⁹ @ 30 GeV p.o.t.

- Preparing first physics result for end 2010
 - Collaboration meeting is happening this week = Results should be out soon!

Backups

SK stability

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1.0 - \left(\sin^2(2\theta_{23})\cos^2(\theta_{31}) + \sin^2(2\theta_{31})\cos^2(\theta_{23})\right)\sin^2(\frac{\Delta m_{23}^2 L}{4E})$$

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1.0 - (\sin^2(2\theta_{23})) \sin^2(\frac{\Delta m_{23}^2 L}{4E})$$

$$P(\nu_{\mu} \to \nu_{e}) \approx \left(\sin^{2}(\theta_{23})\sin^{2}(2\theta_{31})\right)\sin^{2}\left(\frac{\Delta m_{23}^{2}L}{4E}\right)$$

Horizontal / Vertical for INGRID run 34

FGD and INGRID timing

